Increased Na+/Ca2+ Exchanger Activity Promotes Resistance to Excitotoxicity in Cortical Neurons of the Ground Squirrel (a Hibernator)

نویسندگان

  • Juan-Juan Zhao
  • Shan Gao
  • Jun-Zhan Jing
  • Ming-Yue Zhu
  • Chen Zhou
  • Zhen Chai
چکیده

Ground squirrel, a hibernating mammalian species, is more resistant to ischemic brain stress than rat. Gaining insight into the adaptive mechanisms of ground squirrels may help us design treatment strategies to reduce brain damage in patients suffering ischemic stroke. To understand the anti-stress mechanisms in ground squirrel neurons, we studied glutamate toxicity in primary cultured neurons of the Daurian ground squirrel (Spermophilus dauricus). At the neuronal level, for the first time, we found that ground squirrel was more resistant to glutamate excitotoxicity than rat. Mechanistically, ground squirrel neurons displayed a similar calcium influx to the rat neurons in response to glutamate or N-methyl-D-aspartate (NMDA) perfusion. However, the rate of calcium removal in ground squirrel neurons was markedly faster than in rat neurons. This allows ground squirrel neurons to maintain lower level of intracellular calcium concentration ([Ca2+]i) upon glutamate insult. Moreover, we found that Na+/Ca2+ exchanger (NCX) activity was higher in ground squirrel neurons than in rat neurons. We also proved that overexpression of ground squirrel NCX2, rather than NCX1 or NCX3, in rat neurons promoted neuron survival against glutamate toxicity. Taken together, our results indicate that ground squirrel neurons are better at maintaining calcium homeostasis than rat neurons and this is likely achieved through the activity of ground squirrel NCX2. Our findings not only reveal an adaptive mechanism of mammalian hibernators at the cellular level, but also suggest that NCX2 of ground squirrel may have therapeutic value for suppressing brain ischemic damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain

Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...

متن کامل

Na+/H+ exchanger inhibitor, SM-20220, is protective against excitotoxicity in cultured cortical neurons.

BACKGROUND AND PURPOSE Recently, it has been reported that Na+/H+ exchanger (NHE) inhibitors demonstrated protective effects on ischemia/reperfusion brain injury in animal models. However, the mechanisms by which the neurons were protected against ischemic insult remain unclear. To reveal the cellular mechanism of the NHE inhibitor on the neuronal death, we examined the effects of a selective N...

متن کامل

Isoform-specific regulation of the Na+/Ca2+ exchanger in rat astrocytes and neurons by PKA.

The Na+/Ca2+ exchanger is a major transporter of Ca2+ in neurons and glial cells. The Na+/Ca2+ exchanger gene NCX1 expresses tissue-specific isoforms of the Na+/Ca2+ exchanger, and the isoforms have been examined here quantitatively using primary cultures of astrocytes and neurons. We present a PCR-based quantitative method, quantitative end-labeled reverse transcription-PCR (QERT-PCR), to dete...

متن کامل

Cleavage of the Plasma Membrane Na+/Ca2+ Exchanger in Excitotoxicity

In brain ischemia, gating of postsynaptic glutamate receptors and other membrane channels triggers intracellular Ca2+ overload and cell death. In excitotoxic settings, the initial Ca2+ influx through glutamate receptors is followed by a second uncontrolled Ca2+ increase that leads to neuronal demise. Here we report that the major plasma membrane Ca2+ extruding system, the Na+/Ca2+ exchanger (NC...

متن کامل

Reverse mode Na+/Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons.

The importance of Na+/Ca2+ exchangers in the regulation of the physiological and pathological functions of the nervous system has been widely recognized. In this study, we used primary cultured E14.5 cortical neurons as a model system to study the possible roles of the reverse mode Na+/Ca2+ exchange activity in neurotransmission. Using RT-PCR, several exchanger isoforms, ncx1, ncx3 and nckx2-4 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014